Paper ID 1394

Video Semantic Segmentation via Sparse Temporal Transformer

Jiangtong Li^{1*}, Wentao Wang^{1*}, Junjie Chen¹, Li Niu^{1†}, Jianlou Si², Chen Qi², Liqing Zhang^{1†} ¹Department of Computer Science and Engineering, MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University ²SenseTime Research

- Challenges in Video Semantic Segmentation:
- - segmentation task.
 - We propose a novel Sparse Temporal Transformer (STT) module with key selection and query selection to balance the segmentation accuracy and inference efficiency in a good manner. Our proposed selection strategies can reduce the time complexity by a large margin without harming the segmentation accuracy and temporal consistency. • Extensive experiments on two video semantic segmentation datasets, i.e. Cityscapes and Camvid, demonstrate the effectiveness of our method.

Figure 2. Illustration of query selection and key selection.

Experiments:

• Method:

- > Sparse Temporal Transformer Network:
- The flowchart of our Sparse Temporal Transformer method are shown in Figure 1.
- > Query Selection:
- Remove the redundancy points in query feature maps.
- Select rule -- Neighboring Similarity Matrix (NSM):

 $\boldsymbol{p}_{sim} = SoftMax(Q^n \cdot q^T)$ p_{u} : Uniform distribution $\mathfrak{D}_{cos} = \frac{1}{n_b} \sum_{i=1}^{n_b} (1 - \frac{Q_{[i]}^n \cdot q^T}{||Q_{[i]}^n||_2 ||q||_2})$ $\mathfrak{D}_{KL} = KL(\boldsymbol{p}_u || \boldsymbol{p}_{sim})$ $\mathfrak{D}_{NSM} = \mathfrak{D}_{KL} + \mathfrak{D}_{cos}$

> Key Selection:

- Remove the redundancy points in key feature maps.
- Select Rule: enlarge the searching regions gradually from near frame to far frame.

> Qualitative Results:

Figure 3. The qualitative comparison with two baseline methods.

> Quantitative Results:

Comparison with High-Quality Methods

Method	Backbone	Cityscapes			Camvid		
		mIoU (%) ↑	TC (%) ↑	fps (frame/s) ↑	mIoU (%) ↑	TC (%) ↑	fps (frame/s) ↑
NetWarp [20]	ResNet101	80.6	-	0.3	67.1	-	2.8
DFF [61]	ResNet101	68.7	71.4	9.7	-	-	-
GRFP [40]	ResNet101	69.4	-	3.2	66.1	-	4.4
LVS [33]	ResNet101	76.8	-	5.9	-	-	-
Accel [28]	ResNet101/18	72.1	70.3	3.6	66.7	-	7.6
PSPNet18 [56]	ResNet18	75.5	68.5	10.8	71.0	-	24.4
PSPNet50 [56]	ResNet50	78.1	-	4.2	74.7	-	8.5
PSPNet101 [56]	ResNet101	79.4	69.7	2.1	77.6	77.1	4.1
TDNet-PSP18 [25]	ResNet18	76.8	70.4	11.8	72.6	73.2	25.2
TDNet-PSP50 [25]	ResNet50	79.9	71.1	5.6	76.0	77.4	11.1
ETC-PSP18 [37]	ResNet18	73.1	70.6	10.8	75.2	77.3	24.4
ETC-PSP101 [37]	ResNet101	79.5	71.7	2.1	79.4	78.6	4.1
STT-PSP18	ResNet18	77.3	73.0	11.5	76.1	81.4	24.7
STT-PSP101	ResNet101	82.5	73.9	2.2	80.2	82.3	4.2

$$l_{t} = \begin{cases} s + (T - t) * \epsilon, if s + (T - t) * \epsilon < e \\ e, otherwise \end{cases}$$

- > Temporal Transformer:
- Multi-head Attention:

• Temporal transformer encoder:

 $\boldsymbol{X} = LN(\boldsymbol{\widetilde{Q}} + MH(\boldsymbol{\widetilde{Q}}, \boldsymbol{\widetilde{K}}))$

 $FFH(X) = \max(0, XW_1 + b_1)W_2 + b_2$

 $TFE(\widetilde{\boldsymbol{Q}},\widetilde{\boldsymbol{K}}) = LN(\boldsymbol{X} + FFH(\boldsymbol{X}))$

Comparison with High-Speed Methods

Method	Backbone	mIoU (%) ↑	TC (%)↑	fps (frame/s) ↑
DVSNet [50]	ResNet18	63.2	-	30.3
ICNet [55]	ResNet50	67.7	-	50.0
LadderNet [31]	DenseNet121	72.8	-	30.3
SwiftNet [41]	ResNet18	75.4	-	43.5
BiSeNet18 [53]	ResNet18	73.8	-	50.0
BiSeNet34 [53]	ResNet34	76.0	-	37.0
TDNet-BiSe18 [25]	ResNet18	75.0	70.2	47.6
TDNet-BiSe34 [25]	ResNet34	76.4	71.1	38.5
ETC-Mobi [37]	MobileNetV2	73.9	69.9	20.8
STT-BiSe18	ResNet18	75.8	71.4	44.2
STT-BiSe34	ResNet34	77.3	72.0	33.8