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Challenges & Previous Solution

• Challenge 1. The demand of temporal consistency in a semi-supervised manner

• NetWarp [1] and GRFP [2] estimated frame-to-frame motion warping (e.g., optical flow) to segment 
consecutive frames

• ETC [3] adopted warped prediction loss to constrain the prediction of current frame during training and 
performed single-frame prediction during inference.

• Challenge 2. The balance between segmentation accuracy and inference efficiency for real-time applications

• DVSNet [4] employed large models towards the key frames, and propagate to non-key frames using optical 
flows.

• Accel [5] employed large models towards the key frames, and utilized small model to process the non-key 
frames.

• TDNet [6] adopted knowledge distillation from large model towards small model to improve the 
segmentation efficiency without increasing the computational cost.

[1] Raghudeep Gadde, Varun Jampani, and Peter V Gehler. 2017. Semantic video cnns through representation warping. In ICCV 2017.
[2] David Nilsson and Cristian Sminchisescu. 2018. Semantic video segmentation by gated recurrent flow propagation. In CVPR 2018.
[3] Yifan Liu, Chunhua Shen, Changqian Yu, and Jingdong Wang. 2020. Efficient Semantic Video Segmentation with Per-frame Inference. In ECCV 2020.
[4] Yu-Syuan Xu, Tsu-Jui Fu, Hsuan-Kung Yang, and Chun-Yi Lee. 2018. Dynamic video segmentation network. In CVPR 2018.
[5] Samvit Jain, Xin Wang, and Joseph E Gonzalez. 2019. Accel: A corrective fusion network for efficient semantic segmentation on video. In CVPR 2019.
[6] Ping Hu, Fabian Caba, Oliver Wang, Zhe Lin, Stan Sclaroff, and Federico Perazzi. 2020. Temporally distributed networks for fast video semantic segmentation. In CVPR 2020.



Our Solution

• For Challenge 1. The demand of temporal consistency in a semi-supervised manner

• We propose to incorporate a temporal transformer into existing segmentation models as an adaptive module 
to capture the temporal relation among consecutive frames.

• For Challenge 2. The balance between segmentation accuracy and inference efficiency for real-time applications

• We propose two selection strategies towards the temporal transformer framework (i.e., query selection and 
key selection).



Proposed Method

• Sparse Temporal Transformer



Proposed Method

• Query Selection
• Motivation: semantic boundary regions 

(complex regions) need more representation [1].

• Identification of complex regions: the similarity 
between the feature region and its neighboring --
- Neighboring Similarity Matrix (NSM)

[1] Dmitrii Marin, Zijian He, Peter Vajda, Priyam Chatterjee, Sam Tsai, Fei Yang, and Yuri Boykov. 2019. 
Efficient segmentation: Learning downsampling near semantic boundaries. In ICCV 2019.



Proposed Method

• Key Selection
• Motivation: in consecutive frames, tracking the 

corresponding small regions in previous frames 
can bring much useful temporal information.

• Rules for enlarging the searching regions:
• The key frame farther from the current 

frame should have larger key region;
• The size of key regions should vary within 

a proper range.



Experimental Results

• Experiment Setup
• Dataset

• Cityscapes
• Training: 2,975 video clips
• Validation: 500 video clips
• Test: 1,525 video clips

• Camvid
• Training: 367 video clips
• Validation: 100 video clips
• Test: 233 video clips

• Evaluation Metrics
• For segmentation accuracy: mean 

Intersection-over-Union (mIoU)
• For temporal consistency: TC 

following ETC [1], which measures 
the consistency based on the mean 
flow warping error between all 
consecutive frames.

[1] Yifan Liu, Chunhua Shen, Changqian Yu, and Jingdong Wang. 2020. Efficient Semantic Video Segmentation with Per-frame Inference. In ECCV 2020.

• Comparison with Existing Methods
• High-Speed Methods



Experimental Results

• Comparison with Existing Methods
• High-Quality Methods



Experimental Results

• Ablation Study
• Key selection

• Query selection

• Numbers of key frames
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